
Res iprocate S IP S tack

www.res iprocate.orgResiprocate Overview

ReSIProcate

Contents

 Resiprocate Architecture
 Using Resiprocate Stack
 Using Resiprocate DUM
 Resiprocate Code Overview

www.res iprocate.orgResiprocate Overview

ReSIProcate

Architecture Overview of Resiprocate
SIP Stack

www.res iprocate.orgResiprocate Overview

ReSIProcate

ReSIProcate Stack
 ReSIProcate is an object oriented SIP interface and stack implemented in C++. The ReSIProcate approach emphasizes

consistency, type safety, and ease of use.

 The key goals are:
 3261 compliance
 easy to program with
 efficient (> 1000 transactions per second) (Platform Dependent)
 excellent security implementation including TLS and S/MIME
 Win32 and Linux/Unix support
 usable by proxies, user agents and b2buas
 object oriented interface

www.res iprocate.orgResiprocate Overview

ReSIProcate

S IP S tack Architecture (RFC 3261)

Syntax and Encoding

Transport Layer

Transaction Layer

Transaction User

Augmented Backus-Naur Form grammar (BNF)

Defines how a client/server sends/receives requests & receives responses

The transaction layer handles application-layer retransmissions, matching of
responses to requests, and application-layer timeouts. The transaction layer has a
client component (client transaction) and a server component (server transaction),

Each of the SIP entities, except the stateless proxy, is a transaction user.

www.res iprocate.orgResiprocate Overview

ReSIProcate

ReS IProcate S tack Architecture

www.res iprocate.orgResiprocate Overview

ReSIProcate

Res iprocate Components
 Entities

 Transaction User
 Sip Stack Objects
 Transaction FSM
 Transport Selector
 UDP/TCP/TLS Transport
 Message Header Scanner (MHS)
 Async DNS Utility

 FIFO
 TU FIFO
 Txn FIFO
 Trans FIFO

 Timer Queue

www.res iprocate.orgResiprocate Overview

ReSIProcate

Transaction User
 To use the SIP Stack Transaction User has to be implemented.

 Dialog User Manager (DUM) is a Transaction User.

 DUM provides User Agent Functionality including handling of INVITE and SUBSCRIBE/NOTIFY dialogs, registration and
instant messaging

 By using Transaction User Interface we can build applications like JSR 180, Customized B2BUA

 Mainly Provides Interface for Sending and Receiving SIP Messages

S IP S tack Object
 Interface for accessing the SIP Stack functionalities

 Provides APIs for
 Management of SIP Stack
 Register/Unregister TUs
 Adding new Transports
 Sending/Receiving SIP Messages

www.res iprocate.orgResiprocate Overview

ReSIProcate

Transaction FS M
 Implements the SIP Stack Transaction State Machine

 Resolves the Domain Names for Routing

Transport S elector
 The Transport Selector is primarily responsible for:

 Determining the fully-specified destination for an outgoing SipMessage, given a (possibly) partially-specified
destination.

 Deciding which instance of class Transport the outgoing SipMessage is to be sent on.
 If necessary, filling out any fields in the SipMessage that depend on 1) (ie, the host in the topmost Via, unspecified host

parts in Contact header-field-values that refer to this UA, Record-Route header-field-values that depend on which
transport the message is being sent on, etc)

 Serializing the outgoing SipMessage, and passing the serialized form to the Transport instance chosen in second point.

www.res iprocate.orgResiprocate Overview

ReSIProcate

MHS
 SipMessage parsing happens in phases. MsgHeaderScanner performs the first phase of parsing. MsgHeaderScanner is called

from a transport. Framing of the message is an interaction between the transport and the scanner. The transport feeds the
scanner consecutive chunks and the scanner reports when it has framed a message.

 The chunks containing the memory are handed back to the SipMessage for eventual deallocation. In addition, the scanner

lexes the message and identifies the boundaries of header field values.

 Each header field value is parsed on demand. The instance of parser that is created for the header field value is determined by
the header type accessed in the message

UDP/TCP/TLS Transport
 Sends/Receives the SIP Message to Network

www.res iprocate.orgResiprocate Overview

ReSIProcate

FIFO
 FIFOs also known as queues, are a standard thread

synchronization/buffering mechanism. FIFOs are the main
way to move information between threads within
reSIProcate. Since SIP is a message/event protocol, event
FIFOs are a natural and error resistant mechanism for
communicating among threads.

 There is a FIFO between every layer of reSIProcate.

 The following are the FIFOs present in Resiprocate
 between the Transaction State Machine and the

application (TU FIFO)
 between the timers and the transaction state

machine (transaction FIFO)
 between the transaction state machine and the

transports
 between the transport and the network (kernel TX

FIFO)
 between the network and the transports (kernel RX

FIFO)

 The actual FIFO is a template class (abstractFifo.hxx).
The getNext method will wait until there is something in
the FIFO.

www.res iprocate.orgResiprocate Overview

ReSIProcate

Using Resiprocate Stack

www.res iprocate.orgResiprocate Overview

ReSIProcate

Using Res iprocate S tack

 Transaction User Management
 SIP Stack Management
 SIP Message and Headers

www.res iprocate.orgResiprocate Overview

ReSIProcate

Transaction User Management

 To Create a new Transaction User the following needs to be done
 Implement TransactionUser Interface

 name() - New Transaction User Name
 Register Transaction User with the stack

 To send the SIP Message SIP Stack Object should be used and new Transaction User Reference should be passed.

 The Transaction User Class contains TU FIFO through which we can get the SIP Messages.

 Code Snippet

www.res iprocate.orgResiprocate Overview

ReSIProcate

S IP S tack Management
 The SIP Stack can be created as an Object inside the User created class

 Sip Stack Object provides Transaction Level APIs

 The following are the common APIs used
 sipstack() Creates the SIP Stack
 addTransport() adds Listening port
 send() API call is used to send SIP Messages
 buildFdSet() API builds the fdset of the Transport.
 process() API call runs the SIP Stack. So it needs to be called periodically.
 StackThread class can be used for doing the above functionalities.
 The details of the APIs are present in the following location
 Shutdown() API Call can be used to stop the stack

 Code Snippet

www.res iprocate.orgResiprocate Overview

ReSIProcate

Construction of S IP Message

 The Sip Message may be constructed by using Helper class present in the stack.

 The Helper Class provides static function calls

 The some of common API used
 makeRequest()
 makeResponse()
 makeInvite()
 makeCancel()
 makeRegister()
 makeSubscribe()
 makeMessage()
 makePublish()
 …

 Code Snippet

www.res iprocate.orgResiprocate Overview

ReSIProcate

S ip Message and Headers
 A central component of any SIP service is handling of SIP messages and their parts. SIP Messages are handled by

SipMessage Class

 A SIP message consists of
 Headers
 Request/status line
 Body.

 If we want to access/modify the headers, request/status line and body we have to use SipMessage class.

 SIP Headers can be grouped into two types
 Single Instance
 Multiple Instance

 SIP Headers may also consist of parameters

 Request Line and Status Line depend on the type of Message we have received that is whether Request or Response

 Body is the contents that is carried by SIP Message. For Example SDP.

www.res iprocate.orgResiprocate Overview

ReSIProcate

Headers
 Resiprocate Stack provides a uniform way of accessing SIP Headers. To access the headers following procedure has to be

followed
 Header - RFC 3261- header access token. For From Header – Token in “From”
 In Resiporcate to access prefix “h_”. For From Header – h_From

 For Multiple Instance header “s” will be appended to the RFC name.
 For Example if RFC Name is Record Route then header access token is h_RecordRoutes

 header() overloaded method of SipMessage is used to access the header and assign value.
 remove() overloaded method is used to remove the header
 exists() overloaded method is used check the existence of the header
 The Multiple Headers are accessed by stl fashion iteration.

 Parameters
 Parameters are accessed from headers.
 p_ should be used
 Example: const Data& tag = msg->header(h_To).param(p_tag); to access To tag
 param() overloaded method of SipMessage is used to access the header and assign value.
 remove() overloaded method is used to remove the parameter
 exists() overloaded method is used check the existence of the parameter

www.res iprocate.orgResiprocate Overview

ReSIProcate

Request/S tatus Line
 Special Types of Headers
 Accessed by h_RequestLine and h_StatusLine
 isRequest method and isResponse method
 RequestLine provides APIs like method(), uri(), getSipVersion()
 StatusLine provides responseCode(), statusCode(), getSipVersion()

S ip Message Body
 getContents method returns Contents type

 Cast the Contents type to the required Content type found in Content-Type Header

 For Setting content type use setContents of SipMessage

 We can add new Content types and Parser without any modification to reSIP library.

www.res iprocate.orgResiprocate Overview

ReSIProcate

Using Resiprocate DUM

www.res iprocate.orgResiprocate Overview

ReSIProcate

Dialog Usage Manager - DUM
 The Dialog Usage Manager makes writing user agents easy by hiding complex SIP specifics. DUM provides user agent

functionality including the handling of INVITE and SUBSCRIBE/NOTIFY dialogs, registration, and instant messaging. With
DUM we can create applications like softphones, back-to-back user agents, and load generators.

 DUM implements Transaction User

 DUM does the following functions
 Implements Offer/Answer
 Manages Profiles
 Manages AppDialogSetFactory (Equivalent to Call)
 Manages and stores Handlers, which are a way of referencing usages
 Manages redirections (RedirectManager)
 Manages client authentication (ClientAuthManager)
 Manages server authentication (ServerAuthManager)
 Interface to add new Transports
 Manages handles to Usages (HandleManager)
 Provides interfaces to create new sessions as a UAC (invite, subscription, publication, registration, pager, others)
 Provides interfaces to find particular usages based on a DialogId.

www.res iprocate.orgResiprocate Overview

ReSIProcate

DUM Application

 DUM Appliaction

 Create Stack
 Create DUM
 Add Transports
 Create Profile
 Set Profile Options
 Set Handlers
 Start Process Loop

 Application should implement Handlers
 DUM provides API for constructing SipMessage
 Handle are used to send/receive SipMessages within a Dialog

www.res iprocate.orgResiprocate Overview

ReSIProcate

Dialog Usages
 When Dialog is created they establish an association between endpoints within the Dialog. This association is known as

Dialog Usage (http://www.ietf.org/internet-drafts/draft-ietf-sipping-dialogusage-06.txt)
 A Dialog initiated by INVITE Request has an INVITE Usage
 A Dialog initiated by SUBSCRIBE has an SUBSCRIBE Usage

 In Resiprocate Usage concept is used. There are two types of Usages
1. DialogUsage
2. NonDialogUsage

The Usage provides the APIs that are required to send/receive Requests/Responses inside a SIP Dialog.

 Some Example of Usages are
1. ClientRegistration
2. InviteSession
3. …

 Some of the API examples in InviteSession are as follows
1. info()
2. Refer()
3. …

www.res iprocate.orgResiprocate Overview

ReSIProcate

Dialog Usage Inheritance

 How to use Dialog Usage?

www.res iprocate.orgResiprocate Overview

ReSIProcate

DUM Handles
 Handles are used to access the Usage Object.
 Usages are derived from Handled Class. Handles can point to objects which subclass Handled.

 Reasons for Accessing Usages through Handles are
 Usages might get deleted by the time application uses it
 Once created Handle will continue to exists even if Handled Object gets deleted. So it can throw exceptions

 Smart Pointer
 Keeps track of referenced Object
 Throws exception if not found
Handle point to InviteSessions, ClientRegistration, ClientSubscription …

 Code Example

DUM HandleManager
 HandleManager keeps track of Handles.

 The Reference of Handles are stored in HandleManager

 DialogUsageManager is subclass of HandleManager

 This the way the DialogUsageManager and Handles (Usages) are linked.

 DialogUsageManager keeps track of Usages

www.res iprocate.orgResiprocate Overview

ReSIProcate

Handlers
 Handlers are essentially Callbacks needs to be implemented by the application.

 The Callbacks are called from SipStack when a Response or New Requests in the context of the Usages are received.

 The Handlers usually return
 Handles to Usages
 The SipMessage received

 Example of a Handler is InviteSessionHandler. Some of the Callback APIs are
 virtual void onNewSession(ClientInviteSessionHandle, InviteSession::OfferAnswerType oat, const SipMessage& msg)=0;
 virtual void onNewSession(ServerInviteSessionHandle, InviteSession::OfferAnswerType oat, const SipMessage& msg)=0;

 Application should implement the InviteSessionHandler class and the APIs

 setHandler method in DialogUsageManager should be used to set the Handlers.

www.res iprocate.orgResiprocate Overview

ReSIProcate

Profiles
 Profiles are used to set the properties of User Agent like Outbound Proxy, User Name, User Authentication parameters, etc
 The Profile Hierarchy as shown

resip::MasterProfileresip::UserProfileresip::Profile

 Profile is base class. Its as various settable properties such as RegistrationTime, MaxRegistrationTime, SubscriptionTime,
outBoundProxy, etc.

 Three types of APIs
 setXXXX
 getXXXX
 unsetXXX

 If a property is not set then the default value in BaseProfile is taken.
 The User Profiles handles the User related configurations suncg as AOR, Credentials etc
 MasterProfile handles SIP Capability related configuratiions such as method types, methods, options, mime types etc
 There are two models of Profile settings

 Single Profile
 Mutli Profile

www.res iprocate.orgResiprocate Overview

ReSIProcate

 DialogSet
 Container class holding a set of dialogs initiated from a common requests
 Share the same Call-ID and the same from tag in the request that generated the dialog

 Dialog
 Container class holding SIP RFC dialog details

 AppDialog
 An Application can associate user data with Dialog/DialogSet AppDialog, AppDialogSet and AppDialogSetFactory

classes
 This type of association may be required when there are multiple dialogs the Application has to track.

Dialogs

www.res iprocate.orgResiprocate Overview

ReSIProcate

Logger Module
 The Logger Module can be used for debugging purpose

 Log::initialize() call used to initialize the Log Module

 The following options can be used to print the Logs
 Cout – Prints on Standard Output
 Syslog – Prints to Syslog
 File – Prints to User Given File or resiprocate.log
 Cerr – Prints to Standard Error Output

 The Log Levels that can be set are as follows
 CRIT
 Err
 Warning
 Info
 Debug
 Stack
 StdErr

www.res iprocate.orgResiprocate Overview

ReSIProcate

Code Structure

www.res iprocate.orgResiprocate Overview

ReSIProcate

Code S tructure
 rutil

 Various protocol-independent utility classes, used by all the other modules.

 Stack
 -Core SIP stack functionality, including message parsing, message synthesis, and transaction handling.

 Dum
 User Agent functionality, including handling of INVITE and SUBSCRIBE/NOTIFY dialogs, registration, and instant

messaging.

 repro
 Flexible SIP proxy framework.

 API Definitions can be found at http://www.estacado.net/resip-dox/

www.res iprocate.orgResiprocate Overview

ReSIProcate

Q & A

www.res iprocate.orgResiprocate Overview

ReSIProcate

Backup S lides

www.res iprocate.orgResiprocate Overview

ReSIProcate

ReS IProcate S tack Architecture

Application / DUM
SIP Stack

Object

Transaction FSMAsync DNS
/Timer

TXN FIFO TU FIFO

Transport Selector

MHS

Trans FIFO

UDP/TCP/TLS TransportUDP/TCP/TLS Recv

Transaction Layer

Transaction User

Transport Layer

Syntax and Encoding Layer

SIP Message

SIP Message

SIP Message

Message

